$P \neq NP$

Shunya Ekam

August 22, 2024

Let *A* be a countably infinite set of computable irrational numbers of polynomial time-complexity. Let Σ be a finite alphabet that allow us to represent algorithms (convergent sequences) for elements in A , including numbers 0-9 and decimal point. Let *L* be a language over Σ that contain all elements in *A*, up to any finite number of decimals.

Define a relation $R \subset \Sigma^* \times \Sigma^*$ by xRy if and only if $x \in A$ is an irrational number and $y = y(n)$ is an algorithm that calculates *x* up to *n* decimals, for any *n*.

Then $L \in \texttt{NP}$, because there exists a positive integer k that satisfies:

- 1. For all $x \in \Sigma^*$, $x \in L \Leftrightarrow y \in \Sigma^*$ and $(x, y) \in R$ and $|y| \in O(|x|^k)$. The former follows immediately from how *R* was defined. Since $|y|$ is independent of *x*, the latter follows.
- 2. The language $L_R = \{x \# y : (x, y) \in R\}$ over $\Sigma \cup \{\#\}$ is decidable by a deterministic Turing Machine in polynomial time. Since we verify by running the algorithm *y* and checking that is equal to x , the running time is linear over $|x|$.

 $L \notin \mathsf{P}$, because there exists no algorithm that can compute every computable irrational number. Such an algorithm would be infinitely long.